

Copyright © 2018 by Author/s and Licensed by Lectito BV, Netherlands. This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

European Journal of STEM Education,
2018, 3(3), 08
ISSN: 2468-4368

Coding and Computational Thinking in Early Childhood: The Impact of
ScratchJr in Europe

Marina Umaschi Bers 1*

1 Tufts University, 105 College Avenue, 02155 Medford, USA

*Corresponding Author: marina.bers@tufts.edu

Citation: Bers, M. U. (2018). Coding and Computational Thinking in Early Childhood: The Impact of
ScratchJr in Europe. European Journal of STEM Education, 3(3), 08. https://doi.org/10.20897/ejsteme/3868

Published: September 6, 2018

ABSTRACT
In recent years, there has been an increased effort to introduce coding and computational thinking in early
childhood education. In accordance with the international trend, programming has become an increasingly
growing focus in European education. With over 9.5 million iOS downloads, ScratchJr is the most popular
freely available introductory programming language for young children (ages 5-7). This paper provides an
overview of ScratchJr, and the powerful ideas from computer science it is designed to teach. In addition,
data analytics are presented to show trends of usage in Europe and and how it compares to the rest of the
world. Data reveals that countries with robust computer science initiatives such as the UK and the Nordic
countries have high usage of ScratchJr.

Keywords: early childhood, programming, computational thinking

INTRODUCTION

The idea of introducing computer programming in the classroom dates back from the late 60s’. At that time,
Seymour Papert and colleagues at MIT developed the first programming language designed for children, LOGO.
Using a simple textual language, children could type commands for a “turtle”, so she could move around and draw
geometrical shapes by dragging a pen (Papert, 1980). LOGO’s popularity grew all over the world and new versions
of LOGO were implemented in more than a dozen spoken languages on a variety of machines (The Logo
Foundation, 2015).

However, although LOGO pioneered the growing trend of programming languages for children, Papert saw
its greatest potential as an incubator of powerful ideas (Papert, 2000). That is, as a tool to engage children in new
ways of thinking and “thinking about thinking” (Papert, 2005). Papert strongly believed in Constructionism, his
philosophy of education that argued the power of programming languages became most salient when they provided
opportunities for supporting the design and making of personally meaningful computationally-rich projects that
invited children to think in new ways (Papert, 1980).

Programming provides an opportunity to engage in logical and abstract thinking, problem solving and the
creative design process. In the last decade, new programming languages inspired by LOGO and Constructionism
were developed. One of the most popular ones is Scratch (Resnick et. al, 2009), first released in 2007 and available
for free, developed by Mitchel Resnick – Papert’s disciple. Scratch was designed for children 8 years old and
beyond, and provides an icon-based friendly interface, so children can create their own stories, animations and
games. Furthermore, in the era of social media, once children create their projects with Scratch they can share
them on-line with a community of peers that invites re-mixing. Today, over 29 million projects have been shared
on the Scratch website (scratch.mit.edu) and the number keeps growing every day.

mailto:marina.bers@tufts.edu
https://doi.org/10.20897/ejsteme/3868
http://www.lectitopublishing.nl/
http://www.lectitopublishing.nl/journal-for-information-systems-engineering-management

Bers / Coding in Early Childhood

2 / 13 © 2018 by Author/s

Scratch was designed following a “low floors, high ceilings, and wide walls” metaphor (Resnick, 2009). That is,
it provides easy ways for novices to get started (low floor), ways for them to work on increasingly sophisticated
projects over time (high ceiling) and multiple pathways for engagement for all children with diverse interests (wide
walls). However, although the walls are wide, Scratch assumes children have a basic knowledge of reading and
writing (programming blocks have words associated with their actions), as well as the ability to manage complexity
and the almost infinite possibility of commands. When children are younger than 8 years old, they tend to not have
the developmental maturity to use Scratch as they are faced with too many options and too many words.

ScratchJr was created to address this problem. It has even wider walls because it not only engages children with
a variety of personal interests, but also with diverse developmental stages (Bers and Resnick, 2015). ScratchJr is a
free digital coding playground that introduces powerful ideas of computer science into early childhood education
(Bers, 2018b). Just like in the playground, children can choose different activities to do and use their imagination
while making projects they care about. In addition, they develop abstract, sequential thinking and problem solving
strategies while engaging in computational thinking.

This paper describes ScratchJr, and the decisions made in the early design stages to support young children to
become programmers, presents examples of curricular innovations and materials developed for ScratchJr and
provides overall analytics data regarding ScratchJr’s use in the world, with a focus on Europe.

THE CONTEXT: POLICY CHANGES ABOUT COMPUTER SCIENCE EDUCATION

Along with the design of new programming languages for children, such as ScratchJr, research and policy
changes all over the world brought a newfound focus to coding starting in early childhood (Sesame Workshop,
2009; Barron, et al. 2011; International Society for Technology in Education (ISTE), 2007; NAEYC and Fred
Rogers Center for Early Learning and Children’s Media, 2012; U.S. Department of Education, 2010; K-12 CS
framework, https://k12cs.org/). Most of these changes were triggered by the need to educate the workforce of
the future automated economy and by the realization that industry was in need of tech savvy workers. For example,
the U.S. Bureau of Labor Statistics predicts that employment in information technology occupations will grow
12.5% from 2014 to 2024 (Fayer et al., 2017).

In the US, the “Computer Science for All” initiative was launched to bring programming into every single
educational level (Smith, 2016). In Europe, as of the writing of this paper, 16 countries integrate coding in the
curriculum at the national, regional, or local level, including: Austria, Bulgaria, the Czech Republic, Denmark,
Estonia, France, Hungary, Ireland, Israel, Lithuania, Malta, Spain, Poland, Portugal, Slovakia, and the UK
(Balanskat and Engelhardt, 2014; European Schoolnet, 2015; Livingstone, 2012; Bocconi et. al, 2016). Widespread
resources are now available in Europe through the European Coding Initiative’s resource website, or ‘all you need
is {C<3DE}’, which is akin to the United States’ Code.org site (see: allyouneediscode.eu and code.org).

Outside of Europe, countries such as Australia, Singapore, and Malaysia have also established policies and
frameworks for introducing computer programming in K-12 education (Australian Curriculum and Assessment
Authority, 2015; Digital News Asia, 2015; Malaysia Digital Economy Corporation, 2016; Siu and Mei, 2003). In
Argentina, the Ministry of Education’s training courses in computational thinking and programming reached more
than 10,000 teachers during its first launch (Code.org, 2017) and similar experiences happened in Chile through
the Kodea Foundation. Developing countries, such as Ghana, are also introducing coding through non-profit
organizations like the Ghana Code Club (Nguyen, 2016).

According to the non-profit organization Code.org, which encourages schools all over the world to adopt
programming curricula and promote broad participation in computer science, “The Hour of Code” initiative has
surpassed 500 million students served, reaching one out of every 10 students on the planet. This is the largest
education campaign in history (Code.org, 2017). However, historically, education campaigns have served a larger
role than fulfilling the workforce’s demands. They educate the future citizenry of a country. The use of literacy
campaigns that mobilize people and resources on a large scale is a long-established practice. H. S. Bhola traces
literacy campaigns back to the Protestant Reformation in Europe in the early 1500s (Bhola, 1997). Often, these
literacy campaigns supported social, economic, cultural and political reform or transformation. In the 1970s, mass
adult literacy campaigns were commonly initiated by governments following liberation wars with a revolutionary
or decolonization agenda (Bhola, 1984).

As more people learn to code and computer programming departs the exclusive domain of computer science
and becomes central to other professions and to new ways of thinking, coding takes on the civic dimension of
literacy (Bers, 2018a). When developing ScratchJr, the goal was to design an introductory programming language
not to prepare students for computer science degrees and careers (due to the shortage of programmers and
software developers in the industry), but to provide them with the intellectual tools to serve a role in civic society.
Coding is more than a technical skill; it is a way to achieve literacy in the 21st century, like reading and writing.

https://k12cs.org/)
http://www.allyouneediscode.eu/

European Journal of STEM Education, 2018, 3(3), 08

© 2018 by Author/s 3 / 13

Learning to code engages children in new ways of thinking that some researchers have called computational
thinking (Wing, 2006; Barr and Stephenson, 2011; International Society for Technology Education and The
Computer Science Teachers Association, 2011; Lee et al. 2011). This involves a range of analytical mental tools
that are inherent to the field of computer science, including thinking recursively, applying abstraction when figuring
out a complex task, and using heuristic reasoning to discover a solution. These mental tools are universally
applicable (Wing, 2011). Therefore, they can be taught, not only through Computer Science courses, but in an
integrated way with other curricular disciplines at school and from an early age.

Research shows that both from an economic and a developmental standpoint, educational interventions that
begin in early childhood have lower costs and durable effects (Cunha and Heckman, 2007). While most nation-
wide coding initiatives started targeting older children, there are recent endeavors focusing on early childhood. In
Europe, countries such as the United Kingdom have adapted their curriculum to include coding, beginning in early
childhood. In Asia, Singapore launched the nationwide PlayMaker initiative that brings robotics, amongst other
coding technologies, into early childhood classrooms (Digital News Asia, 2015; Sullivan and Bers, 2017).

However, if the introduction of coding is going to start early, there is a need of technologies and pedagogical
approaches that are developmentally appropriate and that take into consideration the cognitive maturity and
abilities of young children (Bers, 2018b). ScratchJr was born out of that need.

SCRATCHJR: A DIGITAL PLAYGROUND FOR CODING

ScratchJr is freely available and can be downloaded for use on several platforms including iOS, Android,
Amazon tablets, and Chromebooks which are rapidly growing in popularity (Leidl et al., 2017). As of February,
2018, there are over 9.5 million iOS downloads of ScratchJr with an average of 104,000 active users each week and
over 20 million projects created. Volunteers from around the world have helped translate ScratchJr into 12
languages.

ScratchJr was developed out of a three-year research grant from the National Science Foundation (DRL-
1118664), as a collaboration between the DevTech Research Group at Tufts University, the MIT Lifelong
Kindergarten Group, and the Playful Invention Company, and is currently financially supported by the Scratch
Foundation. It was released in 2014 and since then its user based has continuously grown (Bers and Resnick, 2015).

Used in classrooms and homes worldwide, ScratchJr enables children, who might or might not know how to
read, to create interactive stories and games by snapping together graphical programming blocks. As shown in
Figure 1, the ScratchJr interface allows children to use blocks that control motion, looks, sound, character
communication, and more (Bers, 2018b).

ScratchJr has a palette of programming blocks, a user’s library of projects, a main project editor, and tools for
selecting and drawing characters and background graphics. Children drag blocks from the palette into the scripting
area and then snap them together to create programs that are read and played from left to right. The programming
blocks are organized into six categories represented by different colors: yellow Trigger blocks, blue Motion blocks,
purple Looks blocks, green Sound blocks, orange Control flow blocks, and red End blocks. When put together as
a jigsaw puzzle, these programming blocks allow children to control their character’s actions on the screen. The
programming blocks span concepts from simple sequencing of motions to more complex control structures.

ScratchJr’s design features support problem solving by reducing unnecessary low-level cognitive burdens. These
design decisions keep the challenge at an appropriate level and may help young children devote sufficient cognitive
resources to the many high-level thinking processes involved in imagining and creating a program.

ScratchJr has a feature called “the grid” that overlays the animation stage (see Figure 2). It can be toggled on
and off, and is most helpful when used during programming (as opposed to when presenting a project). The grid

Figure 1. This image shows the programming app interface

Bers / Coding in Early Childhood

4 / 13 © 2018 by Author/s

was designed to help children understand the units of measurement for each programming block for linear
movement. The grid is similar to the upper right quadrant of the Cartesian coordinate system, with discrete rather
than continuous units of measure. Its numbered axes prompt counting and provide a marker to track counting.

Several design decisions were made for seamless integration with literacy. The ability to create up to four
independent “pages” and to integrate text and speech into a project allows children to create their own storybooks
with a beginning, middle, and end.

The design and development process of ScratchJr started by observing how young children used Scratch
(www.scratch.mit.edu), designed for older children 8 and up, and noting their difficulties (Flannery et al., 2013).
For example, we noted that children were getting lost with so many possibilities for programing commands. Thus,
we simplified the programming blocks options and offered a more limited programming palette. We also noticed
that movement happened too fast and children had a difficult time understanding the relationship between the
programming blocks and their resulting actions. We decided to slow down processes, so every block would take
time before the triggering of the action.

We worked with hundreds of teachers and children through informal afterschool sessions, educator workshops,
experimental classroom interventions, and at-home play sessions. Additionally, we conducted online surveys and
face-to-face focus groups to obtain feedback. These provided valuable insights for our design team.

SCRATCHJR’S DESIGN PRINCIPLES

I. Inspired by Bers framework that describes how new technologies for children can become “playgrounds” that
encourage open-ended exploration, creativity, imagination and social interactions, as well as skill building,
mastering and problem solving (Bers, 2018b), ScratchJr was designed as a digital playground for coding. At the
playground, children are exposed to diverse activities to choose from. They can go to the sand box, the swing, the
slide, or just run around. They can play with sticks, ride their bikes, or create fantasy worlds. Similarly, while using
ScratchJr, children can engage in all kinds of activities beyond coding. They can create and modify characters in
the paint editor, record their own voices and sounds, and even insert photos of themselves using the paint editor’s
camera option. And, of course, they can incorporate those media rich materials into their projects to personalize
them. Furthermore, what is unique about a coding playground such as ScratchJr, in contrast to a multimedia
creation tool, is that children encounter powerful ideas from computer science when programming their games,
animations or stories.

ScratchJr was designed to support children in engaging with seven powerful ideas of computer science that are
developmentally appropriate for young children (Bers, 2018b): algorithms, modularity, control structures,
representation, hardware/software, design process, and debugging (see Table 1). These ideas are aligned with
educational computer science frameworks utilized in schools, such as the K-12 Computer Science Framework, the
CSTA K-12 Computer Science Standards, and the ISTE Standards for Computer Science Educators.

Figure 2. This image shows the different ways to program motion using the grid

European Journal of STEM Education, 2018, 3(3), 08

© 2018 by Author/s 5 / 13

TEACHING WITH SCRATCHJR

Although ScratchJr is a developmentally appropriate programing language that can be learned without knowing
how to read or write, Papert warns against a “technocentric perspective” in which the technology is placed at the
center of the teaching and learning process. (Papert, 1987). Therefore, in addition to designing the programming
language itself, the ScratchJr team developed teaching materials to support the use of ScratchJr both at home and
at school. On the ScratchJr website (scratchjr.org) one can find freely available curriculum units designed for K-2
with a focus on learning ScratchJr by making connections with other content areas such as literacy, narrative genres,
and ludic experiences. In addition, ScratchJr Coding Cards (Bers and Sullivan, 2018) have recently been released.
This set of cards involves three different kind of activities: off-the-screen games to help children understand the
powerful ideas from computer science through unplugged experiences; on-screen activities to learn about the
ScratchJr interface; and ScratchJr challenges to build skills on the different aspects of the programming language.

Table 1. Powerful Ideas from Computer Science and Connections to ScratchJr
Powerful Idea Definition Early Childhood Connections ScratchJr Application
Algorithm A series of ordered instructional steps

taken in a sequence to solve a problem
or achieve an end goal.

Understanding abstraction and
sequencing.

When children put together the
colorful ScratchJr programming blocks
in a logical order and create a sequence
of actions (a script) for the chosen
characters.

Modularity The breaking down of tasks or
procedures into simpler, manageable
units that can be combined or re-used to
create a more complex process.

Understanding that a complex task
needs to be broken down into
smaller tasks.

In ScratchJr, a common practice of
modularity is to copy a portion of a
script (coding sequence) from one
character to another. For example, if a
child wants to make a ScratchJr dance
party featuring several characters, she
can create a chunk of code for a dance
move and copy it to multiple
characters.

Control Structures Control structures determine the order
(or sequence) in which instructions are
followed or executed within an
algorithm or program. For example,
repeat functions, loops, conditionals,
events, and nested structures, are all
control structures.

Understanding control structures
requires an understanding of
patterns and the concept of making
decisions based on certain
conditions as well as cause and
effect.

In ScratchJr, children explore the
concept of control structures by
utilizing control flow blocks that allow
them to create loops and repetitions as
well as set different variables such as
speed.

Representation Programming languages represent
information through the use of a symbol
system. At the same time, computers
store and manipulate data and values in
a variety of ways. In order to be made
available, this data is represented in
different ways.

Understanding that concepts can
be represented using symbols, and
that programming languages are
formal constructed symbol systems
designed to communicate
instructions (an algorithm) to a
machine.

ScratchJr uses different forms of
representations. Colorful blocks
represent different types of
commands. For example, blue blocks
represent motion.

Hardware/Software Computing systems need hardware and
software to operate. The software
provides instructions to the hardware,
which might or might not be visible.
Hardware and software work together
as a system to accomplish tasks, such as
receiving, processing, and sending
information.

Understanding systems and their
components, as well as the
complex interplay between
“instructions” (code) and “objects
that receive those instructions”.

ScratchJr is the software, the
programming language that runs on
different hardware devices.

Design process This iterative process involves several
steps: ask, imagine, plan, create, test,
improve, and share. The process is
open-ended, in that a problem may have
many possible solutions.

Understanding that creating a final
product to be shared with others
involves several steps and
continuing revising of the work.

In ScratchJr the design process starts
when a child asks a question that gives
birth to an idea and ends with creating
a final project that can be shared with
others. The design process makes
computational thinking visible: coding
becomes a tool of expression.

Debugging Fixing problems through systematic
analysis and evaluation, while
developing troubleshooting strategies.

Learning how to debug is an
important skill that is similar to
“checking your work in math” or
“editing” in literacy. It teaches the
powerful lesson that things do not
just happen to work on the first try,
and that many iterations are usually
necessary to get it right.

When using ScratchJr to create a
personally meaningful program
children naturally engage in debugging
by fixing what doesn’t work and
problem solving.

Bers / Coding in Early Childhood

6 / 13 © 2018 by Author/s

Most of the teaching resources developed by the ScratchJr team are focused on helping children engage in
computational thinking by making their own personally meaningful projects. Thus, they are designed for one child
with one tablet. However, this approach doesn’t truly provide a “playground” experience for children. In the
playground, children tend to play together. To address this issue, the DevTech research group developed the
“Collaborative ScratchJr Projects Guide” to support teachers in the making of multi-tablet collaborative projects,
with images and movements that can span across multiple screens and thus involve multiple children. Collaborative
ScratchJr projects can have an overall theme, storyline, or learning goal and allow children to interact with the app
and with each other in new, creative ways.

 In Figure 3 there is an example project that the DevTech Research Group created. The project features the
Lunar New Year, a holiday that is celebrated in many Asian nations to welcome the arrival of spring. Using nine
coordinated tablets, this ScratchJr project displays different parts of the festival: the blooming peach and pear
flowers, the traditional Dragon Dance, and the lighting of red lanterns and firecrackers. To make this project,
programmers had to work together not only through coding, but also by imagining and planning. In the ScratchJr
website it is possible to find other examples of collaborative projects.

USING SCRATCHJR: ANALYTICS

Since ScratchJr’s launch in 2014 the app has been downloaded over 9.5 million times and is currently being
used in every country in the world (except North Korea and Western Sahara). Since January 2016, the ScratchJr
team started to collect Google Analytics data to examine usage patterns. Google analytics is a free tool that allows
small-to-medium organizations to collect data on user behavior by installing a “cookie” on devices that download
ScratchJr. Researchers can gain access to ScratchJr user activity as it happens in real-time on the app, as well as
audience demographics, acquisition, and behavior (Leidl et al., 2017).

An overview of the type of data acquired through Google Analytics can be seen in Figure 4. Weekly usage in
Figure 5 shows a tall peak occurring during Computer Science Education Week each year in December. Thus,
this educational initiative is widely successful in promoting coding in schools. Furthermore, there tends to be a
sharp decline in usage from the end of December to January, likely indicating that while students are home for
winter vacation they are not using ScratchJr frequently. There is also a dip in usage during the summer months.
The data indicate that ScratchJr is used mainly in school settings.

Figure 3. This image shows the Lunar New Year collaborative project

Figure 4. This image shows the Google Analytics overview

European Journal of STEM Education, 2018, 3(3), 08

© 2018 by Author/s 7 / 13

During the two-year period from January 2016 to February 2018, over 20 million new projects were created
and over 26 million existing projects were edited and revised, showing that ScratchJr users are actively working on
improving and testing their programs. Of these projects, over 7 million have been created in Europe (35%) and
over 9 million have been edited and revised in Europe (45%).

Furthermore, over 600,000 projects have been shared with others via email or Apple AirDrop®. Of these
projects, 225,000 have been shared in Europe (38%). In this relatively short amount of time, over 406 million
programming blocks have been used, the five most common blocks being “Forward,” “Start on Green Flag”,
“Up”, “Back”, and “Say” and the three least common blocks being “Stop”, “Start on Touch” and “Start on
Message”. These results from Google Analytics are consistent with previous research on coding and cognitive
development (Flannery and Bers, 2013; Portelance et al., 2015). Many of the most popular blocks for children to
use are the blue motion blocks, which are simple commands for children to start programming their characters.
However, the least common blocks include starting a program (besides on green flag) and sending messages, which
are cognitively more challenging concepts for children to grasp as they require a higher level of sequencing abilities.

The frequency of block usage in Europe reflects how ScratchJr is used internationally. The consistency among
users of various continents is likely due to the fact that children tend to code in a similar manner regardless of their
location, and ScratchJr’s freely available curriculum shares many similarities.

Additionally, ScratchJr maintains a rate of 249,000 returning users each month, while still attaining a consistent
rate of 255,000 new users each month. In Europe there is a rate of 50,000 returning users each month with 83,000
new users per month. Data usage in Europe reflects the international trend of having more new users each month
than returning users thus showing that ScratchJr is a consistently growing app.

According to Google Analytics the geographical areas with the most ScratchJr usage is the “Americas”
(consisting of North America, South America, Central America, and the Caribbean) with 43% of the total usage.
Europe is the next continent with the most usage with 34%, followed by Asia (12%), Oceania (consisting of
Australia, New Zealand, and Polynesia) (9%), and Africa (1%).

In Europe the countries with the most ScratchJr usage are the United Kingdom (40% of European usage),
Sweden (10%), France (10%), Spain (7%), Italy (5%), Finland (5%), the Netherlands (4%), Poland (3%), Germany
(2%), and Denmark (2%). It is important to note, however, that Google Analytics only takes into account the total
number of users for each country and that the percentages are not proportional to the population of the countries.

Figure 6 provides visual data for the percentage of ScratchJr usage by each country’s population. Taking
population into account, the top countries using ScratchJr are Sweden (2% of the population), Finland (2%), the
United Kingdom (1%), and Denmark (1%). This should come as no surprise as the UK and Nordic countries have
robust initiatives to integrate coding into the curriculum.

According to EU Code Week the “British government wants to ensure that all pupils can understand and apply
the fundamental principles and concepts of computer science.” Furthermore, coding in the UK is seen as a means
of creative thinking, not just filling an industry gap. In primary schools 5-7 year olds learn what algorithms are and
how they are executed on digital devices, as well as about creating and debugging programs as well as using logical
reasoning to predict the outcome of a script (EU Code Week 2014). In Denmark and Sweden the concepts of
Computational Thinking are taught to children including abstraction and debugging as well as digital citizenship.
In Finland algorithmic thinking plays a role, however it is introduced mainly in mathematics. Furthermore,
Professional Development Programs in Finland and Sweden introduce primary school educators to ScratchJr
(Bocconi et al., 2018).

Figure 7 shows the total ScratchJr usage in each country in Europe. Compared to the rest of the world,
countries in Europe have very high ScratchJr usage. In Figure 8 the top ten countries using ScratchJr across the
world are shown. The United Kingdom is the second country in terms of usage (18% of international ScratchJr
users). Other top countries include Sweden (5%), France (4%), and Spain (3%).

ScratchJr usage in Europe based on day of the week and month reflects international trends. In Figure 9 the
ScratchJr usage in Europe based on day of the week is shown. The most popular days of the week are Friday and
Thursday, with the least popular being Saturday and Sunday. Figure 10 visualizes the ScratchJr usage in Europe

Figure 5. This line-graph shows weekly ScratchJr usage

Bers / Coding in Early Childhood

8 / 13 © 2018 by Author/s

by month of the year. The most active months are November and December while the least active are July and
August, vacation time. The increase in December is most likely due to Computer Science Education week
initiatives.

Figure 6. This chart shows the percentage of the population using ScratchJr

Figure 7. ScratchJr users for each country in Europe

Figure 8. The top 10 countries in the world using ScratchJr

0.00

0.50

1.00

1.50

2.00

2.50
Pe

rc
en

t o
f P

op
ul

at
io

n

Country

European Journal of STEM Education, 2018, 3(3), 08

© 2018 by Author/s 9 / 13

Google Analytics tracks language by recording a user’s language setting from their browser using ISO codes.
Percentages reflect the proportion of devices registered with a particular language with all registered languages.
The most popular registered languages in Europe are:

1. English-Great Britain (32%)
2. Swedish-Sweden (8%)
3. French-France (7%)
4. Spanish-Spain (4%)
5. English-US (4%)
6. Finnish-Finland (4%)
7. Italian-Italy (3%)
8. Dutch-Netherlands (3%)
9. Polish-Poland (2%)
10. German-Germany (1%)

The ScratchJr team places a priority on trying to support language localization. Therefore, ScratchJr volunteers
from around the globe use Transifex, a web-based translation platform, to translate the ScratchJr app and website.
Volunteers can request to localize in a certain language and are added to that team’s page. They can then translate
strings, a sequence of text, for the app and website. For the website, volunteers have the option of translating
“live”, thus seeing how their translations look on the ScratchJr webpage. After the strings are translated certain
volunteers who have been promoted to reviewers look over the translations to ensure their accuracy. Currently

Figure 9. Shows the number of ScratchJr users in Europe by day of the week

Figure 10. Shows the number of ScratchJr Users in Europe by month

Bers / Coding in Early Childhood

10 / 13 © 2018 by Author/s

ScratchJr is translated into Catalan, Chinese, Dutch, French, English, German, Italian, Japanese, Portugese,
Spanish, Swedish, and Thai. Eighteen additional languages are currently being translated to be included in future
updates. One caveat to language translation is that only languages that are written left-to-right can be included.
Right-to-left languages such as Hebrew and Arabic cannot be translated for ScratchJr because of how the app was
initially configured. In addition to the ScratchJr app and website, the Official ScratchJr Book, written by Dr. Marina
Umaschi Bers and Dr. Mitchel Resnick (Bers and Resnick, 2015), has been translated into Dutch, Swedish, Korean,
Chinese, French, Turkish, Polish, Chinese, and Spanish.

Of the twelve languages that the ScratchJr app supports, ten are the primary language spoken by countries in
Europe. Figure 11 shows the ScratchJr usage in these ten countries (Spain includes both Spanish and Catalan).
The relationship between translated language and ScratchJr usage is two-fold. Many of the languages that are
included in the latest ScratchJr update are from countries which showed high ScratchJr usage before the translated
version of the app was introduced. Having a high demand for translation encourages volunteers to translate
ScratchJr into their language of origin.

CONCLUSIONS

In accordance with the international growing trend, the teaching of coding is becoming an increasingly
important focus in European education. This paper describes ScratchJr, the most popular programming language
for early childhood, and presents an overview of how it is being used in Europe. The paper shows that European
usage trends are in alignment with the rest of the world in terms of coding patterns and daily and monthly usage.
For example, students in Europe are more likely to use ScratchJr during the school week than the weekend,
showing that the app is used heavily in educational settings. Furthermore, countries with stronger policies regarding
the teaching of computer science, such as the UK and the Nordic countries, show higher usage.

Additionally, of the twelve languages that the ScratchJr app supports, ten are the primary languages spoken in
European countries. Future work will focus on expansive localization and translation initiatives, informed by the
analytics data.

ACKNOWLEDGEMENTS

The work on ScratchJr is possible through a generous grant from the National Science Foundation (NSF DRL-
1118664) and the Scratch Foundation. I am thankful to the many teachers and parents who contributed by
completing the ScratchJr survey and the ScratchJr team both at the DevTech research group at Tufts University

Language Country
Catalan and Spanish Spain
Dutch the Netherlands
English UK
French France
German Germany
Italian Italy
Portugese Portugal
Swedish Sweden

Figure 11. The number of ScratchJr users in European countries with languages included in ScratchJr app

European Journal of STEM Education, 2018, 3(3), 08

© 2018 by Author/s 11 / 13

and at the MIT Media Lab. In addition, I am thankful to Melissa Viezel for her work on analysis of data for this
paper and Amanda Strawhacker and Amanda Sullivan for their contributions to the writing.

REFERENCES

Allan, V., Barr, V., Brylow, D. and Hambrusch, S. (2010, March). Computational thinking in high school courses.
In Proceedings of the 41st ACM technical symposium on Computer science education (pp. 390-391). ACM.
https://doi.org/10.1145/1734263.1734395

Australian Curriculum and Assessment Authority. (2015). Information and Communication Technology (ICT)
capability. Available at: https://www.australiancurriculum.edu.au/f-10-curriculum/general-
capabilities/information-and-communication-technology-ict
capability/?searchTerm=2015+technology+and+computer+programming#dimension-content (Accessed 28
March 2018).

Balanskat, A. and Engelhardt, K. (2014): Computing our future: computer programming and coding - priorities,
school curricula, and initiatives across Europe. European Schoolnet. Available at:
http://www.eun.org/c/document_library/get_file?uuid=521cb928-6ec4-4a86-b522-
9d8fd5cf60ce&groupId=43887 (Accessed 28 March 2018).

Barr, V. and Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the
role of the computer science education community? ACM Inroads, 2(1), 48–54.
https://doi.org/10.1145/1929887.1929905

Barron, B., Cayton-Hodges, G., Bofferding, L., Copple, C., Darling-Hammond, L. and Levine, M. (2011). Take a
giant step: a blueprint for teaching children in a digital age. New York: The Joan Ganz Cooney Center at Sesame
Workshop.

Bers, M. U. and Resnick, M. (2015). The official ScratchJr book. San Francisco, CA: No Starch Press.
Bers, M. U. (2010). The TangibleK tobotics program: applied computational thinking for young children. Early

Childhood Research and Practice, 12(2). Available at: http://ecrp.uiuc.edu/v12n2/bers.html. (Accessed 28 March
2018).

Bers, M. U. (2018a). Coding as a literacy for the 21st Century. Education Week.
Bers, M. U. (2018b). Coding as a Playground. London and New York: Routledge Press.
Bers, M. U. and Sullivan, A. (2018, July). ScratchJr Coding Cards: Creative coding activities. San Francisco, CA: No Starch

Press. ISBN-13: 978-1-59327-899-1.
Bhola, H. S. (1997). Systems thinking, literacy practice: Planning a literacy campaign in Egypt. Entrepreneurship,

innovation and change, 5(1), 33-47.
Bhola, H. S. (1984). Campaigning for Literacy: Eight National Experiences of the Twentieth Century, with a Memorandum to

Decision-Makers. UNIPUB, 4611-F Assembly Drive, Lanham, MD 20703.
Bocconi, S., Chioccariello, A. and Earp, J. (2018). The Nordic approach to introducing Computational Thinking

and programming in compulsory education. Report prepared for the Nordic@BETT2018 Steering Group. Available
at: https://doi.org/10.17471/54007 (Accessed 28 March 2018).

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P. and Punie, Y. (2016).
Developing computational thinking in compulsory education. European Commission, JRC Science for Policy Report.

Brennan, K. and Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association,
Vancouver, Canada. Available at:
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf (Accessed 28 March
2018).

Clements, D. H. (1985). Differential effects of computer programming (Logo) and computer assisted instruction
on young children's executive processes and cognitive development [Summary]. In 51th Biennial Meeting of the
Society for Research in Child Development, 5, 59. https://doi.org/10.2190/RCNV-2HYF-60CM-K7K7

Clements, D. H. (1987). Longitudinal study of the effects of Logo programming on cognitive abilities and
achievement. Journal of Educational Computing Research, 3(1), 73-94.

Clements, D. H. and Meredith, J. S. (1993). Research on Logo: Effects and efficacy. Journal of Computing in Childhood
Education, 4(4), 263-290.

Code.org. (2017). Computer science pledges and announcements. Available at:
https://medium.com/@codeorg/computer-science-pledges-and-announcements-8f6aaf33239e (Accessed 28
March 2018).

Cunha, F. and Heckman, J. (2007). The technology of skill formation. American Economic Review, 92(2), 31-47.
https://doi.org/10.1257/aer.97.2.31

https://doi.org/10.1145/1734263.1734395
https://www.australiancurriculum.edu.au/f-10-curriculum/general-capabilities/information-and-communication-technology-ict%20capability/?searchTerm=2015+technology+and+computer+programming#dimension-content
https://www.australiancurriculum.edu.au/f-10-curriculum/general-capabilities/information-and-communication-technology-ict%20capability/?searchTerm=2015+technology+and+computer+programming#dimension-content
https://www.australiancurriculum.edu.au/f-10-curriculum/general-capabilities/information-and-communication-technology-ict%20capability/?searchTerm=2015+technology+and+computer+programming#dimension-content
http://www.eun.org/c/document_library/get_file?uuid=521cb928-6ec4-4a86-b522-9d8fd5cf60ce&groupId=43887
http://www.eun.org/c/document_library/get_file?uuid=521cb928-6ec4-4a86-b522-9d8fd5cf60ce&groupId=43887
https://doi.org/10.1145/1929887.1929905
http://ecrp.uiuc.edu/v12n2/bers.html
https://doi.org/10.17471/54007
http://web.media.mit.edu/%7Ekbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
https://doi.org/10.2190/RCNV-2HYF-60CM-K7K7
https://medium.com/@codeorg/computer-science-pledges-and-announcements-8f6aaf33239e
https://doi.org/10.1257/aer.97.2.31

Bers / Coding in Early Childhood

12 / 13 © 2018 by Author/s

Digital news Asia. (2015). IDA launches $1.5m pilot to roll out tech toys for preschoolers. Available at:
https://www.digitalnewsasia.com/digital-economy/ida-launches-pilot-to-roll-out-tech-toys-for-preschoolers.
(Accessed 28 March 2018).

Ertas, A. and Jones, J. C. (1996). The engineering design process (2nd ed.). New York, NY: John Wiley and Sons, Inc.
European Schoolnet (2015). Computing our Future: Computer Programming and Coding Priorities, School Curricula, and

Initiatives across Europe.
Fayer, S., Lacey, A. and Watson, A. (2017, January). STEM occupations: Past, present, and future. Spotlight on

Statistics. U.S. Bureau of Labor Statistics.
Flannery, L. P. and Bers, M. U. (2013). Let’s dance the “robot hokey-pokey!”: children’s programming approaches

and achievement throughout early cognitive development. Journal of Research on Technology in Education, 46(1), 81-
101. https://doi.org/10.1080/15391523.2013.10782614

Flannery, L. P., Kazakoff, E. R., Bontá, P., Silverman, B., Bers, M. U., and Resnick, M. (2013). Designing ScratchJr:
support for early childhood learning through computer programming. In proceedings of the 12th international
conference on interaction design and children (IDC '13). ACM, New York, NY, USA, 1-10.
https://doi.org/10.1145/2485760.2485785

International Society for Technology in Education. (2007). NETS for students 2007 profiles. Washington, DC:
ISTE. Available at: www.iste.org/standards/nets-for-students/nets-for-students-2007-profiles.aspx#PK-2.
(Accessed 28 March 2018).

International Society for Technology in Education and the Computer Science Teachers Association. (2011).
Operational definition of computational thinking for K-12 thinking. International Society for Technology in Education
(ISTE) and the Computer Science Teachers Association (CSTA). Available at: http://www.iste.org/docs/ct-
documents/computational-thinking-operational-definition-flyer.pdf. (Accessed 28 March 2018).

K-12 Computer Science Framework Steering Committee. (2016).
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., et al. (2011). Computational thinking for youth

in practice. ACM Inroads, 2(1), 32–37. https://doi.org/10.1145/1929887.1929902
Leidl, K., Bers, M. U., Mihm, C. (2017). Programming with ScratchJr: a review of the first year of user analytics.

In the proceedings of the International Conference on Computational Thinking Education, 2017. Wanchai, Hong Kong.
Livingstone, S. (2012). Critical reflections on the benefits of ICT in education. Oxford Review of Education, 38(1), 9-

24. ISSN 0305-4985. https://doi.org/10.1080/03054985.2011.577938
Malaysia Digital Economy Corporation (2016). Creating a nation of digital makers key to Malaysia’s future success.

Available at: https://www.mdec.my/news/mydigitalmaker. (Accessed 28 March 2018).
Massachusetts Department of Elementary and Secondary Education. (2016). Massachusetts Science and

Technology/Engineering Curriculum Framework.
NAEYC and Fred Rogers Center for Early Learning and Children’s Media. (2012). Technology and interactive

media as tools in early childhood programs serving children from birth through age 8. Joint position statement.
Washington, DC: NAEYC. Latrobe, PA: Fred Rogers Center for Early Learning at Saint Vincent College.
Available at: www.naeyc.org/files/naeyc/file/positions/PS_technology_WEB2.pdf. (Accessed 28 March
2018).

National Academies of Science. (2010). Report of a workshop on the scope and nature of computational thinking.
Washington DC: National Academies Press.

Nguyen, M. (2016). Turning Ghana Upside Down with Coding. Available at: https://medium.com/scratchteam-
blog/turning-ghana-upside-down-with-coding-3811c4777e4b. (Accessed 28 March 2018).

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas, Basic Books, Inc.
https://doi.org/10.3102/0013189X016001022

Papert, S. (1987). Information technology and education: Computer criticism vs. technocentric thinking.
Educational researcher, 16(1), 22-30. https://doi.org/10.1147/sj.393.0720

Papert, S. (2000). What's the big idea? Toward a pedagogy of idea power. IBM Systems Journal, 39(3.4), 720-729.
Papert, S. (2005). You can’t think about thinking without thinking about thinking about something. Contemporary

Issues in Technology and Teacher Education, 5(3/4), 366-367.
Portelance, D. J., Strawhacker, A. and Bers, M. U. (2015). Constructing the ScratchJr programming language in the

early childhood classroom. International Journal of Technology and Design Education, 1-16. Online First.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... and Kafai, Y. (2009).

Scratch: programming for all. Communications of the ACM, 52(11), 60-67.
https://doi.org/10.1145/1592761.1592779

Sesame Workshop. (2009). Sesame workshop and the PNC Foundation join White House effort on STEM
education. Available at:
http://www.sesameworkshop.org/newsandevents/pressreleases/stemeducation_11212009 (Accessed 28
March 2018).

https://www.digitalnewsasia.com/digital-economy/ida-launches-pilot-to-roll-out-tech-toys-for-preschoolers
https://doi.org/10.1080/15391523.2013.10782614
https://doi.org/10.1145/2485760.2485785
http://www.iste.org/standards/nets-for-students/nets-for-students-2007-profiles.aspx#PK-2
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1080/03054985.2011.577938
https://www.mdec.my/news/mydigitalmaker
http://www.naeyc.org/files/naeyc/file/positions/PS_technology_WEB2.pdf
https://medium.com/scratchteam-blog/turning-ghana-upside-down-with-coding-3811c4777e4b
https://medium.com/scratchteam-blog/turning-ghana-upside-down-with-coding-3811c4777e4b
https://doi.org/10.3102/0013189X016001022
https://doi.org/10.1147/sj.393.0720
https://doi.org/10.1145/1592761.1592779
http://www.sesameworkshop.org/newsandevents/pressreleases/stemeducation_11212009

European Journal of STEM Education, 2018, 3(3), 08

© 2018 by Author/s 13 / 13

Siu, K. W. M. and Mei, S. L. (2003). Technology Education in Hong Kong: International Implications for
Implementing the “Eight Cs” in the Early Childhood Curriculum. Early Childhood Education Journal, 31. 143-150.
https://doi.org/10.1023/B:ECEJ.0000005315.91625.dc

Smith, M. (2016). Computer Science for all. The White House Blog. Available at:
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all. (Accessed 28 March 2018).

Sullivan, A. and Bers, M. U. (2017). Dancing robots: Integrating art, music, and robotics in Singapore's early
childhood centers. International Journal of Technology and Design Education. Online First.
https://doi.org/10.1007/s10798-017-9397-0

The Logo Foundation. (2015). Logo History. Available at: http://el.media.mit.edu/logo-
foundation/what_is_logo/history.html (Accessed 28 March 2018).

U.S. Department of Education, Office of Educational Technology. (2010). Transforming American education:
Learning powered by technology. Washington, DC: U.S. Department of Education, Office of Educational
Technology. Available at: http://www.ed.gov/technology/netp-2010 (Accessed 28 March 2018).

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–36.
https://doi.org/10.1145/1118178.1118215

Wing, J. (2011). Research notebook: Computational thinking—What and why? The Link Magazine, Spring.
Carnegie Mellon University, Pittsburgh. Available at: https://www.cs.cmu.edu/link/research-notebook-
computational-thinking-what-and-why (Accessed 28 March 2018).

https://doi.org/10.1023/B:ECEJ.0000005315.91625.dc
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://doi.org/10.1007/s10798-017-9397-0
http://el.media.mit.edu/logo-foundation/what_is_logo/history.html
http://el.media.mit.edu/logo-foundation/what_is_logo/history.html
http://www.ed.gov/technology/netp-2010
https://doi.org/10.1145/1118178.1118215
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

	INTRODUCTION
	THE CONTEXT: POLICY CHANGES ABOUT COMPUTER SCIENCE EDUCATION
	SCRATCHJR: A DIGITAL PLAYGROUND FOR CODING
	SCRATCHJR’S DESIGN PRINCIPLES
	TEACHING WITH SCRATCHJR
	USING SCRATCHJR: ANALYTICS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

